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Abstract. We calculate the dynamical relativistic corrections, originating from radiative one-gluon ex-
change, to the leptonic decay width of heavy quarkonia in the framework of a covariant formulation of
light-front dynamics. Comparison with the non-relativistic calculations of the leptonic decay width of J = 1
charmonium and bottomonium S-ground states shows that relativistic corrections are large. Most impor-
tantly, the calculation of these dynamical relativistic corrections legitimate a perturbative expansion in
αs, even in the charmonium sector. This is in contrast with the ongoing belief based on calculations in the
non-relativistic limit. Consequences for the ability of several phenomenological potentials to describe these
decays are described.

1 Introduction

Although the structure of heavy quarkonia in terms of
a heavy quark–antiquark non-relativistic bound state has
been known for a long time, many recent developments
show the importance of a relativistic description of such
states. Mainly two paths are followed.

(1) One can first estimate relativistic corrections to the
q̄q bound state in a v/c expansion. This is the aim
of the NRQCD formalism [1]. When the quark mass
is large enough, this is certainly adequate since this
expansion should converge rapidly. It is however not
clear whether the charm quark mass is heavy enough
for such an expansion to be valid. To check it out, one
should compare the results of NRQCD with relativis-
tic calculations.

(2) Relativistic corrections can also be calculated in a rel-
ativistic framework to describe the two-body bound
state, such as the Bethe–Salpeter formalism, or light-
front dynamics (LFD). In a previous article [2], we
have investigated the relativistic kinematical correc-
tions to the leptonic decay width of the J/ψ and the Υ
induced by the finite momentum between their quark
and antiquark. We used an appropriate formalism, the
so-called “covariant formulation of light-front dynam-
ics” (CLFD), the details of which can be found in [3].
As pointed out in this reference, the CLFD allows a
straightforward comparison between relativistic and
non-relativistic calculations.
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We shall investigate in this article the importance of
dynamical relativistic corrections. Kinematical relativis-
tic corrections can be calculated without any knowledge
of the dynamical origin of the two-body wave function.
Dynamical corrections, on the other hand, correspond to
relativistic corrections to the wave function itself. While
the non-relativistic two-body wave function of the J = 1
state has only two components (the S and D states), the
relativistic wave function formulated on the light-front has
six dynamical components [3]. If the dynamical origin of
the two-body interaction is known, these components can,
in principle, be calculated exactly or else calculated in per-
turbation theory, starting from the non-relativistic com-
ponents. This has been done for instance in [4], for the
calculation of the relativistic corrections to the deuteron
wave function.

In the case of heavy quarkonium, the two body inter-
action has two main parts: a confining interaction, and
the interaction coming from the exchange of an effective
gluon (one-gluon exchange, OGE). The latter interaction
gives rise, in the non-relativistic limit, to the well-known
Coulomb interaction. While little is known of the dynam-
ical origin of the confining potential, one may hope that
for heavy quarkonia, the two-body wave function is mostly
sensitive, for relativistic corrections, to the short range
part of the interaction, i.e. to the one-gluon exchange po-
tential and its 1/r non-relativistic behaviour.

This is the usual assumption made when calculating
the dynamical relativistic correction coming from the
OGE interaction. In zeroth order in a �k2/m2 expansion,
where �k is the relative momentum of the quark–antiquark
pair in the two-body bound state, it gives rise to the fol-
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lowing well-known correction to the leptonic decay width
of J = 1 states [5,6]:

ΓNR
1 = ΓNR

0

(
1− 16αs

3π

)
. (1)

In the case of the J/Ψ leptonic decay width, this contri-
bution amounts to a 50% reduction. This large correction
clearly calls for a relativistic calculation of this contribu-
tion to all orders in �k2/m2. This is the aim of the present
article.

We shall follow very closely the procedure of [2]. We
refer the reader to this reference, and to [3] for a review
article on CLFD. We introduce in Sect. 2 the scheme of
the calculation of the leptonic decay width. The dynamical
relativistic corrections are introduced in Sect. 3. Numerical
results are presented in Sect. 4, and our conclusions and
perspectives are drawn out in Sect. 5.

2 The leptonic decay width
of heavy quarkonium

2.1 The quarkonium wave function in CLFD

Among the various ways to deal with relativity in the de-
scription of bound states, we will focus on LFD. In the
standard formulation of LFD [7], the wave function of a
bound system is defined on a plane characterised by the
equation t + z/c = 0. The usual Schrödinger, equal time,
formalism is easily recovered in LFD by letting c go to
infinity.

The description of relativistic heavy quark systems in
LFD has many advantages, of which the most important
one may be the absence of vacuum fluctuations. Accord-
ingly, a meaningful decomposition of the state vector de-
scribing the system in terms of Fock components of defi-
nite number of particles is possible. Of course, the number
of Fock components to be considered in any practical cal-
culation depends on the dynamics of the system, and on
the kinematical regime one is interested in.

The most serious drawback of this formulation, how-
ever, is that the position of the light-front t+ z = 0 (with
c = 1) is not rotational invariant. Since rotations in the
zx and zy planes change the position of the light-front,
the associated generators shall depend on the dynamics
and cannot be reduced to kinematical transformations [8].
This means that one needs to know the complete dynamics
in order to write down the general structure of a bound
state of definite angular momentum. It also means that
any electromagnetic operator should have the same (dy-
namical) transformation properties to match the bound
state wave function one’s. This is essential to guarantee
that any physical amplitude (or cross-section) does not
depend on the particular choice of the light-front we start
with.

We therefore need an explicit procedure to exhibit in a
convenient way these dynamical transformations. This is
achieved in the covariant formulation of LFD. Our start-
ing point is the invariant definition of the light-front by

ω · x = 0 where ω is a (unspecified) light-like four vector
(ω2 = 0). The standard formulation of LFD can be easily
recovered with the particular choice ω = (1, 0, 0,−1) for
the light-like four vector.

This definition of the light-front is explicitly invariant
by any four-dimensional rotations, or any three-dimen-
sional rotations and Lorentz boosts. Consequently, these
transformations become ω-dependent, but do not necessi-
tate the knowledge of the dynamics of the system to con-
struct them explicitly. The dynamics enters now into the
ω-dependence of the wave function and of the electromag-
netic operator, in such a way that any physical amplitude
should not depend on the particular position of the light-
front, i.e. on ω, unless approximations have been made.
In this case, which is almost always true in practice, the
explicit covariance of the approach enables us to exhibit
the ω-dependence of the amplitude and to separate the
physical part from the non-physical, ω-dependent one, as
we shall explain below for the leptonic decay amplitude.

The wave function Φ, of a two-body bound state, can
be decomposed in terms of all the possible independent
spin structures compatible with the quantum numbers of
the state studied. In the particular case of vector mesons,
which we are interested in, we can write

Φλ
σ2σ1

(k1, k2, p, ω) =
√

meλ
µ(p)ū

σ2(k2)φµvσ1(k1), (2)

with

φµ = ϕ1
(k1 − k2)µ

2m2 + ϕ2
1
m

γµ + ϕ3
ωµ

ω · p + ϕ4
(k1 − k2)µ �ω
2mω · p

+ ϕ5
i

2m2ω · pγ5ε
µνργ(k1 + k2)ν(k1 − k2)ρωγ

+ ϕ6
mωµ �ω
(ω · p)2 . (3)

This decomposition is similar to the decomposition of the
deuteron wave function found in [4]. The six components
of the wave function, ϕ1–ϕ6, depend on two invariants. In
order to make a close connection to the non-relativistic
case, it will be convenient to introduce another pair of
variables [3] defined by

�k = L−1(P)�k1 = �k1 −
�P√
P2

[
k10 −

�k1 · �P√
P2 + P0

]
, (4)

�n =
L−1(P)�ω
|L−1(P)�ω| =

√
P2 L

−1(P)�ω
ω · p , (5)

where
P = k1 + k2. (6)

The relativistic momentum �k corresponds, in the frame
where �k1 + �k2 = �0, to the usual relative momentum be-
tween the two particles. Note that this choice of variable
does not assume that we restrict ourselves to this particu-
lar frame. The unit vector �n corresponds, in this frame, to
the spatial direction of �ω. In terms of these variables, the
wave function takes a form similar to the non-relativistic
one:

Ψλ
σ2σ1

(�k, �n) =
√

mw†
σ2

ψλ(�k, �n)wσ1 , (7)
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with

�ψ(�k, �n) = f1
1√
2
�σ + f2

1
2

(
3�k(�k · �σ)

�k2
− �σ

)

+ f3
1
2
(3�n(�n · �σ)− �σ)

+ f4
1
2k

(
3�k(�n · �σ) + 3�n(�k · �σ)− 2(�k · �n)�σ

)

+ f5

√
3
2
i
k

[
�k × �n

]
+ f6

√
3
2k

[[
�k × �n

]
× �σ

]
, (8)

where wσ is the two-component Pauli spinor normalised
to w†

σwσ = 1, and �σ are the usual Pauli matrices. The
relation between ψλ and �ψ, is the same as the relation
between the spherical function Y λ

1 (�n) and �n.
The coefficients of the spin structures in (3) and (8)

are scalar functions of two independent invariants, which
we can choose as �k2 and �k ·�n, since these variables are only
rotated by a Lorentz boost [3]. In the non-relativistic limit,
only two components remain, f1 and f2, and these only
depend on �k2. This can easily be seen if we keep track
of the c factors, and then let c go to infinity to get the
non-relativistic limit. In this study of heavy quarkonium
states, one may neglect the tensor component, f2, so one is
left with the non-relativistic wave function f1 ≡ φNR(�k2).
The relation between ϕ1, ϕ2 and φNR is given by [3]

ϕ1(�k2) =
m2

4εk(εk +m)

√
2φNR(�k2), (9)

ϕ2(�k2) =
m

4εk

√
2φNR(�k2), (10)

where εk = (�k2 + m2)1/2. Note that the wave function
f1 ≡ φNR is normalised according to

∫ ∣∣∣φNR(�k2)
∣∣∣2 d3k

(2π)3
m

εk
= 1. (11)

2.2 The leptonic decay width

Since the total physical amplitude for the process MJ →
e+e− can be factorised into two separate amplitudesMJ →
γ and γ → e+e−, the relevant physical information is com-
pletely included in the amplitude Mµρ to produce a pho-
ton with polarisation εµ from a vector quarkonium state
of polarisation ερ.

Since our formulation of LFD is explicitly covariant, we
can decompose Mµρ in terms of all possible tensor struc-
tures build up with the two four-momenta at our disposal,
p and ω, where p is the four-momentum of the quarkonium
[2]. Thus, we can write

Mµρ = Faµρ
1 +

B1

2ω · paµρ
2 +

B2

2ω · paµρ
3 +B3

M2

(ω · p)2 a
µρ
4

+Daµρ
5 , (12)

with

aµρ
1 = gµρ − pµpρ

M2 , (13a)

aµρ
2 = pµωρ + pρωµ, (13b)

aµρ
3 = pµωρ − pρωµ, (13c)

aµρ
4 = ωµωρ, (13d)

aµρ
5 =

pµpρ

M2 . (13e)

We have denoted byM the mass of the quarkonium. Note
that the term proportional to D does not contribute to
the leptonic decay width. The amplitude Mµρ has two
kinds of terms. The first one, proportional to F , is the
physical contribution to the decay width. The other three,
proportional to B1, B2 and B3, are ω-dependent contri-
butions. In an exact calculation, the coefficients B1, B2
and B3 should be zero since the physical leptonic decay
width should not depend on the particular orientation of
the light-front one starts with. However, in any approxi-
mate calculation, these terms may be non-zero, but they
are not physical. Consequently, they have to be eliminated
in the computation of the physical leptonic width.

To extract F from the general amplitudeMµρ, one can
first multiply Mµρ successively by the five tensor struc-
tures a1 to a5 given in (13). This gives a system of five
coupled equations which is solved to get the physical am-
plitude F . Thus, we find

F =
1
2
(I1 − 2I2 + I4 + I5) , (14)

with
Ii = Mµρa

µρ
i . (15)

These quantities are easily evaluated once Mµρ is calcu-
lated from the process under consideration, using the dia-
grammatical rules given in [3]. Given F , the decay width
can be calculated [2], and is given by

Γ =
4π
3M3 α

2e2
q|F |2, (16)

where eq is the electric charge of the quark and α is the
electromagnetic fine structure constant.

2.3 The zeroth order calculation

The leading order contribution to the leptonic decay is
shown in Fig. 1, where we have removed for simplicity the
trivial vertex γ → e+e−. Off-energy shell effects are gov-
erned by the variable τ , which is unambiguously deter-
mined by four-momentum conservation and the on-mass
shell condition for each particle [3]. Using the conservation
law at the bound state vertex, we have1

k1 + k2 = p+ ωτ. (17)

1 One should note that in CLFD, in the frame where we have
�k1 + �k2 = �0, the total momentum �p is not �0. Instead �p + �ωτ
is �0.
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Fig. 1. Leading order contribution to the leptonic decay width.
The dashed line represents the spurion (see text for details)

To keep track of this conservation law, we represent the
four-vector ωτ by a dashed line in every diagram (the so-
called spurion line, see [3] for more details). Note that the
outgoing photon has virtuality q2 = p2. However, it can
be assumed to be a “physical particle” in the sense that
the final process γ → e+e− is completely disconnected
from the decay process MJ → γ, and is exactly calculable
in terms of the outgoing free electron and positron. As
already explained in detail in [2], the zeroth order con-
tribution to the amplitude, represented in Fig. 1, is given
by

Mµρ = −
√
3m
∫

d3k1

(2π)3 2εk1(1− x)
× Tr [γµ(�k1 +m)φρ(m−�k2)] , (18)

where x = ω ·k1/ω ·p and φρ is defined in (3). The physical
part of the amplitude in zeroth order calculated by (14),
F0, can now be written in the form

F0 =
∫

d3k

(2π)3
m

εk
O0(�k2)φNR(�k2), (19)

where O0(�k2) is

O0(�k2) = −2
√
6m
[
1 +

2
3
m

εk

(
1− εk

m

)2
]
. (20)

Note that in leading order in a �k2/m2 expansion, kinemat-
ical relativistic corrections originate only from the factor
m/εk of the relativistic phase space volume. In the non-
relativistic limit, one has

FNR
0 = −2

√
6mφNR(r = 0). (21)

3 Dynamical relativistic corrections

3.1 Radiative corrections

As already pointed out, the dynamical relativistic correc-
tions necessitate the knowledge of the dynamical origin of
the two-body wave function, i.e., the way quark–antiquark
states are bound. This goal is still far from being achieved.
The standard assumption to overcome this issue is to sup-
pose that for quark masses heavy enough, the dynamics
is governed by a perturbative one-gluon exchange. The
physical amplitude Mµρ for the relevant processes are in-
dicated in Fig. 2. They can be calculated analogously to
(18) using the diagrammatical rules given in [3]. The de-
tails of the calculation are too lengthy to be shown here,

Fig. 2. Radiative correction to the leptonic decay width

Fig. 3. Vertex renormalisation contribution to the leptonic
decay width

but present no particular difficulties. The amplitude is
both ultraviolet and infrared divergent. The computation
of these contributions is given details of in the appendix.

Since these diagrams are ultraviolet divergent, we also
need to include the renormalisation of the quark charge
at the electromagnetic vertex, as has been already treated
in detail in [9]. The corresponding diagram for this con-
tribution is shown in Fig. 3. The counterterm Z is given
by

Z =
4
3
αs

[
9
8π

+
1
2π
log
(

µ2

m2

)
+
1
4π
log
(

Λ2

m2

)]
, (22)

where the leading 4/3 is a factor of colour generated by
the gluon exchange.

The ultraviolet regularisation of the amplitude is done
according to the Pauli–Villars prescription, with a cut-off
Λ. This is the same prescription as in [9]. The amplitude
is made infrared finite by giving a small non-zero mass µ
to the photon. We shall see in the next section that the
final contribution remains infrared finite, as it should.

3.2 Coulomb subtraction

As is well known, one should be very careful in the eval-
uation of dynamical relativistic corrections as indicated
in Fig. 2. Indeed, when we evaluate the zeroth order con-
tribution shown in Fig. 1, with the non-relativistic wave
function solution of the Schrödinger equation, φNR(�k2),
with the non-relativistic two-body potential

Vq̄q(r) = VOGE(r) + VConf(r), (23)

we implicitly incorporate corrections of the type shown in
Fig. 2, in leading non-relativistic order at least. One should
therefore make sure that these contributions are properly
removed from the relativistic calculation in order to avoid
double counting.

The usual procedure to do this is to remove from the
relativistic OGE the Coulomb interaction. We shall see
below that our formulation of the leptonic decay width in
CLFD enables us to have a clear handle on the contribu-
tion to remove, at any level of approximation.

Let us start from the Schrödinger equation, written in
the form

φNR(�k2) = − 4m
s − M2

∫
d3k′

(2π)3
Vq̄q(�k′2)φNR(�k′2), (24)
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�
Fig. 4. Coulomb contribution to the radiative correction of
the leptonic decay width

with Vq̄q given by (23), and s = 4(�k2 + m2). The con-
tribution to φNR(�k2) which corresponds in perturbation
theory (first order in αs) to the OGE interaction in the
non-relativistic limit is therefore given by

δφNR(�k2) =
4
3

4m
s − M2

∫
d3k′

(2π)3
αs

(�k − �k′)2
φNR(�k′2). (25)

Inserted in the zeroth order calculation indicated in Fig. 1,
and written in (19), it gives the contribution δF to the
physical amplitude:

δF =
∫

d3k

(2π)3
m

εk
O0(�k2)δφNR(�k2). (26)

This contribution is represented graphically in Fig. 4. It is
ultraviolet finite, but diverges in the infrared region. We
regularise the latter divergence by giving a small finite
mass µ to the gluon. Note also that in (25), the phase
space volume in �k′ is the non-relativistic one since it in-
volves the non-relativistic wave function, the solution of
the Schrödinger equation. However, in (26), it involves the
relativistic phase space volume since one has to perform
the integral over �k on the whole momentum range, as done
in (19) for the calculation of kinematical relativistic cor-
rections.

The contribution δF of (26), together with δφNR(�k2)
given in (25), should be removed from the total relativistic
amplitude Mµρ given by (18). In the non-relativistic limit
for the two-body bound state (limit (�k′2/m2) � 1), it
gives the following contribution to F :

δFNR =
4
3
αs

m

µ
FNR

0 . (27)

3.3 Non-relativistic limit

In the non-relativistic limit for the two-body bound state,
the contribution of Fig. 2 to the physical amplitude is

FNR
OGE =

4
3
αs

[
m

µ
− 7
8π

+
1
2π
log
(

µ2

m2

)

+
1
4π
log
(

Λ2

m2

)]
FNR

0 , (28)

while the contribution of Fig. 3 gives, from (22),

FNR
Z = −ZFNR

0 = −4
3
αs

[
9
8π

+
1
2π
log
(

µ2

m2

)

+
1
4π
log
(

Λ2

m2

)]
FNR

0 . (29)

Adding the contributions of FNR
OGE and FNR

Z , then remov-
ing the contribution δFNR, we get the final, infrared finite,
contribution in the non-relativistic limit:

FNR
1 = − 8

3π
αsF

NR
0 . (30)

Added to FNR
0 , it gives the well-known radiative correction

in leading order in αs, as indicated in (1) for the total
width.

4 Numerical results

To easily compare our numerical calculations with the
non-relativistic limit found above, we consider the follow-
ing ratio:

R ≡ Γ1

ΓNR
0

=
Γ1

Γ0

Γ0

ΓNR
0

, (31)

where Γ1 is the relativistic decay width to first order in αs
(calculated in Sect. 3.1), Γ0 is the relativistic decay width
in leading order in αs (calculated in Sect. 2.3), while ΓNR

0
is the non-relativistic limit in leading order in αs given by
the Van Royen–Weisskopf formula:

ΓNR
0 = 16πe2

q

α2

M2 |φNR(r = 0)|2. (32)

We also note

Γ0

ΓNR
0

= RK, (33)

Γ1

Γ0
=
(
1− 16αs

3π
RD

)
. (34)

The ratio RK is simply the kinematical relativistic correc-
tions we already calculated in [2]. The dynamical correc-
tions have been written in the form of (34) to explicitly
exhibit the non-relativistic limit of the radiative correc-
tions when the two-body bound state wave function is
restricted to very small momenta. In this case, RD should
go to unity.

For the hadronic vertex, we use two types of test wave
functions to assess the importance of these relativistic cor-
rections. On the one hand, we take an harmonic oscillator
wave function corresponding to a confining potential for
large distances between the quark and the antiquark. The
wave function reads

φNR
H (�k2) = N

(
6π
k2

m

)3/4

exp

(
−3
4

�k2

k2
m

)
. (35)

In the previous expression, k2
m is the mean relative mo-

mentum squared. In this case, the wave function at the
origin can be written

φNR
H (r = 0) = N

(
2
3π

)3/4 (
k2

m

)3/4
. (36)
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On the other hand, we take the Coulomb wave function
expected to dominate for very heavy quark masses. It is
given by

φNR
C (�k2) = 8N

√
π

(k2
m)

5/4(
�k2 + k2

m

)2 . (37)

As in (35), k2
m is the mean relative momentum squared.

Thus, the wave function at the origin is

φNR
C (r = 0) = N

1√
π

(
k2

m

)3/4
. (38)

Note that the choice of these test wave functions is just a
way to investigate the sensitivity of the decay constant to
various shapes of the wave function. It is not intended to
imply any assumption about the exact dynamics binding
the heavy quark–antiquark pair. The normalisation factor
N is calculated according to (11). It goes to 1 in the non-
relativistic limit.

In Figs. 5 and 6, we plot our numerical results for the
kinematical and dynamical (radiative) relativistic correc-
tions, for the charmonium and the bottomonium ground
state respectively, as a function of the square of the radial
wave function at the origin, u0, defined by

u0 =
√
4πφ(r = 0). (39)

This is indeed the relevant variable in this case since the
leading, non-relativistic decay width, ΓNR

0 , as given in
(32), is directly proportional to it. In the following numer-
ical calculation, we choose αs = 0.3 for the charmonium
sector and αs = 0.15 for the bottomonium sector.

The kinematical relativistic correction is shown in
Fig. 5a for the J/Ψ , with mc = MJ/Ψ/2, is the same as
the one already calculated in [2] for three different phe-
nomenological potentials. The results obtained here for
our two kinds of test wave functions are very similar in
shape. As expected, a larger reduction is obtained for the
Coulombic wave function as it has larger high momentum
components2. The dynamical relativistic corrections are
indicated in Fig. 5b. They are much larger, with a sharp
decrease as a function of u2

0. Again, the Coulombic wave
function has a larger correction. For the typical value of
u2

0 of the order of 1GeV
3, the correction is of the order

of 0.25. This means that the well-known non-relativistic
radiative correction, −(16αs)/(3π), in (1) is reduced by a
factor 1/4. This is consistent with the first estimate of this
correction found in [10]. This result has an important and
rather nice consequence: it justifies an expansion in αs in
the charmonium sector, since the radiative correction is
now of the order of 10–15%, as compared to the 50% re-
duction given by previous non-relativistic calculation with
αs = 0.3.

The total correction to the decay width, represented
by the ratio R, is shown in Fig. 5c. Surprisingly enough,
this ratio is rather insensitive to the precise value of u2

0,
i.e., to the precise value of the radial wave function at the
origin. Indeed, the two relativistic corrections (kinematical

2 This correction even diverges in a naive �k2/m2 expansion!
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Fig. 5a–c. Relativistic corrections to the J/Ψ leptonic de-
cay width, for the two test wave functions. We show both the
Coulombic one (solid line) and the harmonic one (dashed line).
These contributions are plotted as a function of u2

0, defined in
(39) and are proportional to the square of the wave function at
the origin. In a we give the kinematical correction, ratio RK,
and b shows the dynamical correction, ratio RD, and c the
total correction, the ratio R. The mass of the charm quark is
taken to be MΨ/2

and dynamical) have opposite effects on R and tend to
compensate each other, leading to an overall reduction
factor varying from 0.6 (for a Coulombic wave function) to
0.7 (for an harmonic wave function). This indicates that to
have an agreement with the new experimental decay width
of the J/Ψ [11], the square of the radial wave function at
the origin should be of the order of 0.8–1GeV3. This is the
case for several potentials; see for example [12–15]. A pure
Coulombic potential at short distance, like the Cornell
potential [16], is however ruled out by our analysis, while
a Coulombic potential modified according to asymptotic
freedom is perfectly viable [12,15].

The results for the Υ state are indicated on Figs. 6.
The behaviour is very similar to the one observed in the
charmonium sector. The overall correction factor is of the
order of 0.65 (for a Coulombic wave function) and 0.8 (for
an harmonic wave function). The total correction factor
is surprisingly large given the large bottom quark
mass. However, the correction factor is much larger for a
Coulombic wave function than an harmonic oscillator one.
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Fig. 6a–c. Same as in Fig. 5 but for the Upsilon decay width.
The bottom quark mass is taken to be MΥ /2. The values of
u2

0 for the harmonic oscillator wave function have been delib-
erately restricted in order to correspond to physical ranges for
the mean squared momentum between the quark–antiquark
pair

This is indeed natural since for large quark mass the two-
body wave function is concentrated to small distances. In
this region, the high momentum components of the wave
function play a major role in enhancing relativistic correc-
tions.

In order to get agreement with the experimental de-
cay width, the square of the wave function at the origin
needs to be of the order of 6 to 8GeV3. This has several
interesting consequences. On the one hand, two potentials
which are compatible with the J/Ψ decay width (logarith-
mic [14], and power law [13]) give a far too small decay
width for the Υ [17]. These potentials have no Coulombic
components, and they lack high momentum components
which show up in the Υ sector. On the other hand, a pure
Coulombic potential still gives a too large wave function
at the origin. The two potentials of [12,15], which correct
the Coulomb interaction at short distances according to
asymptotic freedom, are compatible with the experimen-
tal Υ decay width3, as well as the J/Ψ one.

3 The squared radial wave function at the origin is of the
order of 6 to 6.5GeV3

5 Perspectives

We have presented a coherent formulation of the rela-
tivistic corrections to the leptonic decay width of heavy
quarkonia. These corrections include both kinematical and
dynamical contributions; the latter were calculated in first
order in αs, but to all orders in �k2/m2.

As already found in our previous study [2], relativis-
tic corrections are very large in the charmonium sector,
and not negligible in the bottomonium sector. Kinemat-
ical relativistic corrections, which are independent of the
dynamics binding the quark–antiquark pair, lead to a large
reduction of the leptonic decay width. Dynamical relativis-
tic corrections, which correspond to relativistic corrections
to the two-body bound state itself, lead to a sizeable re-
duction of the standard correction 16αs/3π found in the
non-relativistic limit. This result is particularly important
since it shows that an expansion in αs now becomes mean-
ingful. Indeed, the first order correction in αs now amounts
to about 10–15% correction in the case of the J/Ψ , down
from 50% in the non-relativistic limit.

While the individual relativistic corrections (kinemati-
cal and dynamical) depend strongly on the mean momen-
tum squared (or equivalently on the radial wave function
at the origin), the total relativistic correction is remark-
ably constant as a function of the square of the wave func-
tion at the origin. The final correction is about 0.6 for a
Coulombic wave function and 0.7 for an harmonic wave
function, relative to the non-relativistic zeroth order cal-
culation (Weisskopf–Van Royen approximation).

These relativistic corrections show that realistic phe-
nomenological two-body potentials, such as the Richard-
son [12] or the Buchmüller–Tye [15] potentials, are able to
reproduce the decay width of heavy quarkonia, both in the
charmonium and the bottomonium sector. This solves a
long-standing problem in this domain, as phenomenologi-
cal two-body potentials were able to reproduce the whole
spectrum of charmonium and bottomonium states, but
not their leptonic decay width. As already explained in [2],
the importance of relativistic corrections originates from
the fact that the leptonic decay widths are very sensitive
to the high momentum components of the wave function.
This occurs because it involves the integral over the whole
momentum range of the wave function and not the square
of it, as in many other observables.

Acknowledgements. We are grateful to V.A. Karmanov for
fruitful discussions, and a careful reading of this manuscript.

A Appendix

We give details in this appendix of the calculation of the
radiative corrections to the leptonic decay width. Here, we
concentrate on the first diagram shown in Fig. 2. The sec-
ond one can be calculated analogously. The kinematical
conventions are shown in Fig. 7. Applying the diagram-
matical rules given in [3], we find
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Fig. 7. Kinematics relevant for the first diagram contributing
to the radiative corrections of the leptonic decay width

Mµρ = −4
√

m

3

∫
d3p1

2εp1(2π)3
d3r1

2εr1(2π)3
dτ
τ

dτ ′

τ ′
dτ0
τ0

× δ(p2
2 − m2)δ(r2

2 − m2)δ(q2)
× Θ(ω · p2)Θ(ω · r2)Θ(ω · q)(s − M2)

× Tr

[
γµ(�p1 +m)γν(�r1 +m)

× φρ(m−�r2)γν(m−�p2+ �ω′)
]
, (40)

with s = (r1+r2)2. The integrations over τ , τ ′ and τ0 can
be done using the delta functions induced by the on-mass
shell condition of LFD. We also use momentum conser-
vation at vertices, including spurion momenta, to express
the various momenta. We have∫

dτ
τ

δ(r2
2 − m2) =

1
(1− x)(s − M2)

,∫
dτ ′

τ ′ δ(p2
2 − m2) =

1
(1− x′)(s′ − M2)

,∫
dτ0
τ0

δ(q2) =
1

2ω · p(x − x′)τ0
,

with

s′ = (p1 + p2)2, x =
ω · r1

ω · p , x′ =
ω · p1

ω · p ,

τ =
s − M2

2ω · p , τ ′ =
s′ − M2

2ω · p , τ0 = τ − m2 − r1 · p1

ω · p(x − x′)
.

Thus, we can express s, s′ and all other invariant quanti-
ties in terms of the integration variables. These integration
variables can be conveniently chosen as x, x′, �R2

T, �R′2
T and

�RT · �R′
T, with

R = r1 − xp and R′ = p1 − x′p, (41)

and �RT is the transverse part of R relative to the di-
rection of �ω, with the consequence that R2 = −�R2

T (see
the appendices in [3] for more details). The calculation of
the five-dimensional integral is done numerically using a
Monte Carlo procedure.
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